Exposure to Ultrafine Particles: Bay Area Elementary Schools and Beijing High-rise Apartments

Nasim A. Mullen

Presentation at Lawrence Berkeley National Laboratory
September 10, 2010

Ultrafine Particles (UFP)

- Defined by diameter, d_p≤ 0.1 μm (lower limit undefined)
- Correlate poorly with particle mass (PM) concentration
- Correlate well with particle number (PN) concentration

Average distribution calculated from one year of measurements in Pittsburgh, PA (Stanier et al., 2004)

UFP Exposure: Proposed Health Effects

Daily Mortality and Fine and Ultrafine
 Particles in Erfurt, Germany." Whichman et al 2000

- $-NC_{0.01-0.1}$; RR=1.055 for 4-day lag
- $-PM_{2.5}$; RR=1.033 for 0-day lag
- $-PM_{10}$; RR=1.036 for 0-day lag

RR=1.26 found for PM_{2.5} by Dockery et al. (1993)

Possible Biological Pathways

CARB Study: Ultrafine Particle Concentrations in Schoolrooms and Homes

Research Team

- UC Berkeley: Nasim Mullen, Seema Bhangar, William Nazaroff
- Aerosol Dynamics Inc.: Susanne Hering, Nathan Kreisberg

Dates of Field Work

- Homes: November 2007 August 2008
- Schools: June 2008 December 2008

Current knowledge: Classroom IAQ and health

Student health and performance associated with...

- Elevated CO₂ (Myhrvold et al., 1996; Shendell et al., 2004; Madureira et al., 2009; van Dijken et al., 2006; Simoni et al., 2010)
- Low air-exchange rate (Wålinder et al., 1997 and 1998;
 Smedje & Norbäck, 2000)
- Visible mold (Koskinen et al.,1997; Simons et al., 2010)
- VOC concentration (Norbäck et al.,1990; Smedje et al., 1997)
- Airborne bacteria and mold concentration (Smedje et al., 1997)
- Elevated PM₁₀ (Simoni et al., 2010)

Current knowledge: Classroom UFP concentrations

- Munich, Germany: Fromme et al. (2007), 36 classrooms. No significant indoor sources.
- <u>Athens, Greece</u>: Diapouli et al. (2007), 7 schools. No significant indoor sources.
- <u>Southwest Germany</u>: Zöllner et al. (2007), 27 schools. No significant indoor sources
- <u>Pembroke, Ontario</u>: Weichenthal et al. (2008), 37 classrooms. No significant indoor sources.
- Australia (small village): Guo et al. (2008), 1 classroom for 2weeks. Indoor sources: classroom cleaning, candle burning, match/kerosene burning.
- Brisbane, Australia: Morawaska et al. (2009), 3 classrooms. Indoor sources: art activities, cleaning

Questions Investigated in Alameda County Classroom Study

- What are the classroom UFP exposure levels?
- What are the factors affecting exposure levels?
- How do classroom exposures compare to residential exposures?
- Are indoor sources important?
- Are classrooms "well-ventilated"?
- Are UFP levels influenced by changes in classroom ventilation?

Classroom Sites

Data Collection Methods

- Water-based condensational particle counter (WCPC) used to measure UFP indoors and outdoors at 1minute resolution
- O₃, NO, CO and CO₂ also monitored

Researcher observation and sensors used to record occupant activities

Data Analysis Methods

Air-Exchange Rate (λ)

$$\frac{dY_{in}}{dt} = \frac{E(t)}{V} + \lambda \cdot Y_{out} - \lambda \cdot Y_{in}$$

$$\frac{dY_{in}}{dt} = \frac{E(t)}{V} + \lambda \cdot Y_{out} - \lambda \cdot Y_{in}$$

$$\lambda = \frac{\int_{t_i}^{t_f} \frac{E(t)}{V} dt - \left(Y_{in}(t_f) - Y_{in}(t_i)\right)}{\int_{t_i}^{t_f} Y_{in}(t) dt - \int_{t_i}^{t_f} Y_{out}(t) dt}$$

Indoor Proportion of Outdoor Particles (f)

$$\frac{dN_{in}}{dt} = (f \cdot N_{out} - N_{in}) \cdot (k_d + \lambda)$$

$$f = \frac{\frac{N_{in}(t_f) - N_{in}(t_i)}{k_d + \lambda} + \int_{t_i}^{t_f} N_{in}(t)}{\int_{t_i}^{t_f} N_{out}(t)}$$

- Y_{in}, Y_{out} = Indoor and outdoor CO₂ concentration, respectively (ppm)
- N_{in}, N_{out} = Indoor and outdoor PN concentration, respectively (cm⁻³)
- E(t) = Emissions of CO₂ by occupants (cm³/hr)
- V= Volume of the classroom (m³)
- k_d = Deposition rate of particles indoors (h⁻¹)

Results: Time-averaged PN Concentration

Occupied Periods

Vacant Periods

*Outdoor monitoring at S4 was discontinued from 12am to 6am every day

Example PN Time-Series: S1

Figure created by William Nazaroff

Example PN Time-Series: S5

Figure created by William Nazaroff

Source Events

S3 - Heater

S3 - Candle

S5 - Heater

Daily Integrated Student Exposure

Mean in schools: **50 x 10³ cm⁻³ h/d** (RSD= 46%)

Mean in homes: 320 x 10³ cm⁻³•h/d (RSD= 71%)

Figure by William Nazaroff

Indoor minus outdoor CO₂ when students were present

Distribution of 1-minute average $CO_{2,in} - CO_{2,out}$

Results across all sites:

- •GM= 268 ppm
- •GSD= 2.8
- •18% of measurements
- >700ppm

Ventilation per Person (VPP)

	VPP (L/s)
S1	18
S2	15
S3	99
S4	7
S5	6
S6	7

- ASHRAE standard= 5 L/s
- EUROVEN proposal= 25 L/s
- Santamouris et al. (2008) results:
 - Median naturally-ventilated classrooms= 3 L/s (21 papers reviewed)
 - Median mechanically-ventilated classrooms= 8 L/s (22 papers reviewed)

Air-Exchange Rate (**AER**) and Indoor Proportion of Outdoor Particles (**IPOP**)

	DOOR(S) OPEN						DOOR(S) CLOSED				
	AER	AER	IPOP	IPOP		AER		IPOP	IPOP		
	(h ⁻¹)	range	(-)	range	N	(h ⁻¹)	range	(-)	range	N	
S1	3.6	0.7-10.5	0.67	0.32-0.91	17	1.7	-	0.99		1	
S2	5.6	1.9-6.6	0.62	0.27-0.78	5	0.9	0.82-0.88	0.08	0.08-0.08	2	
S3 a	9.3	9.1-9.5	0.72	0.52-0.95	2	12.5	11.7-13.5	0.61	0.56-0.67	2	
S4	2.9	1.1-8.8	0.63	0.35-0.92	9	0.8	0.7-0.8	0.42	0.40-0.43	2	
S5 a	1.6	1.0-2.0	0.51	0.28-0.88	4	2.5	1.1-4.8	0.43	0.24-0.57	5	
S6	4.4	-	0.73	-	1	0.7	0.3-2.6	0.40	0.19-0.82	11	

^a S3 and S5 had continuous mechanical ventilation during hours of student occupancy

IPOP vs. AER

Alameda County Classroom UFP Exposure: Conclusions

- Outdoor sources are main contributor to indoor PN
- PN concentrations are higher when the classroom is occupied compared to when it is vacant
- Exposure in classrooms is lower than in homes
- Ventilation appears adequate in the majority of classrooms
- In some cases, higher AER results in higher IPOP

Characterizing Exposure to Ultrafine Particles in Beijing High-Rise Apartments

- Dates of Field work: June August 2009
- Chinese Collaborators: Dr. Yinping Zhang, Dr. Shuxiao
 Wang and Liu Cong from Tsinghua University

What is known about IAQ in urban Chinese residences?

- Ethylbenzene and xylene emissions suspected from cooking and building materials (Ohura at al., 2009)
- PAH emissions suspected from cooking, mothballs and indoor smoking (Zhu et al., 2009)
 - Formaldehyde and acetaldehyde emissions suspected from building materials (Weng et al., 2010)

What is known about UFP in urban Chinese residences?

No prior studies of UFP in urban residences

ARTICLE IN PRESS

Atmospheric Environment xxx (2010) 1-9

Contents lists available at ScienceDirect

Atmospheric Environment

ournal homepage: www.elsevier.com/locate/atmosenv

Ultrafine particle concentrations and exposures in four high-rise Beijing apartments

Nasim A. Mullen 4.*, Cong Liu b, Yinping Zhang b, Shuxiao Wang c, William W. Nazaroff a

^{*}Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94729-1710, USA

Department of Building Science and Technology. Tringhus University, Briting, China.

^{*}Department of Environmental Engineering, Tsinghap University, Beijing, China

Characteristics of Beijing, China

- Population: 22 Million; Pop. Density ~ 1,300/ km²
- Since 1980's, housing boom has resulted in construction of mostly high-rise buildings
- Mean outdoor PN (2004-2006)= 32,800 cm⁻³ (Wu et al., 2008)
- Mean outdoor PM_{2.5} (2007)= 74–92 μg/m³ (Zhao et al., 2009)

Research Questions

- What are the UFP exposure levels in Beijing high rise apartments?
- What proportion of exposure comes from indoor / outdoor sources?
- What are the indoor sources?
- How do results in Beijing compare to results from Alameda County?

Data Collection Methods

- Simultaneous indoor and outdoor PN measurement for 48+ continuous hours
- Monitored in 4 apartments within high rise buildings in 3 neighborhoods
- Documented occupant behavior using sensors and questionnaires

Data Analysis Methods

 Daily-Integrated PN exposure due to residential exposures (cm⁻³ x h/d):

$$\overline{Exp} = \frac{PN_{awake}h_{awake} + PN_{asleep}h_{asleep}}{d_{monitored}}$$

- PN_{awake}, PN_{asleep} = PN average during hours a given resident was awake or asleep, respectively (cm⁻³)
- h_{awake}, h_{asleep} = Hours a given resident was awake or asleep, respectively (h)
- d_{monitored} = Days monitored (d)

Site Characteristics

A1

- 180 m³
- ~50 m from major roadway
- 7th floor
- 2 adults

A2

- 280 m³
- ~150 m from major roadway
- 23rd floor
- 2 adults +1 child

A3

- 210 m³
- ~70 m from major roadway
- 16th floor
- 2 adults

A4

- 220 m³
- ~20 m from major roadway
- 14th floor
- 5 adults + 1 adolescent

Field Set-up

Awake (15 hrs):

PN in: 40,000 cm⁻³

PN out: 24,000 cm⁻³

Asleep (19 hrs):

PN in: 24,000 cm⁻³

PN out: 27,000 cm⁻³

Peak ID

a-f, h-i: Unknown

g: Fried eggs, bacon;

toast

j: Fried beef, vegetables;

toast

Awake (14 hrs):
PN in: 5,400 cm⁻³
Asleep (14 hrs):
PN in: 300 cm⁻³

Peak ID:

Pk 1: Toast

Pk 2: Noodles

Pk 3: Noodles and

fried eggs

Awake (28 hrs):

PN in: 17,000 cm⁻³

PN out: 21,000 cm⁻³

Asleep (16 hrs):

PN in: 5,500 cm⁻³

PN out: 14,000 cm⁻³

Peak ID:

k: Fried eggs

I: Cooked porridge

Awake (27 hrs): PN in: 25,000 cm⁻³ Asleep (22 hrs): PN in: 11,000 cm⁻³

Daily-Integrated PN Exposure

Exposure Apportionment: Indoor and Outdoor Sources

Summary: UFP exposure in Beijing high-rise apartments

- Apts. with greater natural ventilation:
 - Have faster decay of indoor generated peaks
 - Have higher proportion of outdoor particles
- Apartments with more indoor peak events had higher average exposure
- Comparable daily-integrated PN exposure in Beijing apartments and Bay Area homes

Thank you!

Funding Agencies:

- California Air Resources Board
- US National Science Foundation
- Natural Science Foundation of China

Advisors and Collaborators:

- William W Nazaroff
- Seema Bhangar
- Cong Liu
- Shuxiao Wang
- Yinping Zhang
- Susanne Hering
- Nathan Kreisberg

Questions?

